|
Lines 1-3
Link Here
|
|
|
1 |
/* Although this file really shouldn't have access to the library internals, |
| 2 |
* it's helpful to let it call jround_up() and jcopy_block_row(). |
| 3 |
*/ |
| 4 |
#define JPEG_INTERNALS |
| 5 |
|
| 6 |
// LibJPEG includes. |
| 7 |
|
| 8 |
extern "C" |
| 9 |
{ |
| 10 |
#include "jinclude.h" |
| 11 |
#include "jpeglib.h" |
| 12 |
} |
| 13 |
|
| 14 |
#if JPEG_LIB_VERSION >= 80 |
| 15 |
|
| 16 |
/* |
| 17 |
* transupp.c |
| 18 |
* |
| 19 |
* Copyright (C) 1997-2009, Thomas G. Lane, Guido Vollbeding. |
| 20 |
* This file is part of the Independent JPEG Group's software. |
| 21 |
* For conditions of distribution and use, see the accompanying README file. |
| 22 |
* |
| 23 |
* This file contains image transformation routines and other utility code |
| 24 |
* used by the jpegtran sample application. These are NOT part of the core |
| 25 |
* JPEG library. But we keep these routines separate from jpegtran.c to |
| 26 |
* ease the task of maintaining jpegtran-like programs that have other user |
| 27 |
* interfaces. |
| 28 |
*/ |
| 29 |
|
| 30 |
#include "transupp.h" /* My own external interface */ |
| 31 |
#include <ctype.h> /* to declare isdigit() */ |
| 32 |
|
| 33 |
namespace Digikam |
| 34 |
{ |
| 35 |
|
| 36 |
#if TRANSFORMS_SUPPORTED |
| 37 |
|
| 38 |
/* |
| 39 |
* Lossless image transformation routines. These routines work on DCT |
| 40 |
* coefficient arrays and thus do not require any lossy decompression |
| 41 |
* or recompression of the image. |
| 42 |
* Thanks to Guido Vollbeding for the initial design and code of this feature, |
| 43 |
* and to Ben Jackson for introducing the cropping feature. |
| 44 |
* |
| 45 |
* Horizontal flipping is done in-place, using a single top-to-bottom |
| 46 |
* pass through the virtual source array. It will thus be much the |
| 47 |
* fastest option for images larger than main memory. |
| 48 |
* |
| 49 |
* The other routines require a set of destination virtual arrays, so they |
| 50 |
* need twice as much memory as jpegtran normally does. The destination |
| 51 |
* arrays are always written in normal scan order (top to bottom) because |
| 52 |
* the virtual array manager expects this. The source arrays will be scanned |
| 53 |
* in the corresponding order, which means multiple passes through the source |
| 54 |
* arrays for most of the transforms. That could result in much thrashing |
| 55 |
* if the image is larger than main memory. |
| 56 |
* |
| 57 |
* If cropping or trimming is involved, the destination arrays may be smaller |
| 58 |
* than the source arrays. Note it is not possible to do horizontal flip |
| 59 |
* in-place when a nonzero Y crop offset is specified, since we'd have to move |
| 60 |
* data from one block row to another but the virtual array manager doesn't |
| 61 |
* guarantee we can touch more than one row at a time. So in that case, |
| 62 |
* we have to use a separate destination array. |
| 63 |
* |
| 64 |
* Some notes about the operating environment of the individual transform |
| 65 |
* routines: |
| 66 |
* 1. Both the source and destination virtual arrays are allocated from the |
| 67 |
* source JPEG object, and therefore should be manipulated by calling the |
| 68 |
* source's memory manager. |
| 69 |
* 2. The destination's component count should be used. It may be smaller |
| 70 |
* than the source's when forcing to grayscale. |
| 71 |
* 3. Likewise the destination's sampling factors should be used. When |
| 72 |
* forcing to grayscale the destination's sampling factors will be all 1, |
| 73 |
* and we may as well take that as the effective iMCU size. |
| 74 |
* 4. When "trim" is in effect, the destination's dimensions will be the |
| 75 |
* trimmed values but the source's will be untrimmed. |
| 76 |
* 5. When "crop" is in effect, the destination's dimensions will be the |
| 77 |
* cropped values but the source's will be uncropped. Each transform |
| 78 |
* routine is responsible for picking up source data starting at the |
| 79 |
* correct X and Y offset for the crop region. (The X and Y offsets |
| 80 |
* passed to the transform routines are measured in iMCU blocks of the |
| 81 |
* destination.) |
| 82 |
* 6. All the routines assume that the source and destination buffers are |
| 83 |
* padded out to a full iMCU boundary. This is true, although for the |
| 84 |
* source buffer it is an undocumented property of jdcoefct.c. |
| 85 |
*/ |
| 86 |
|
| 87 |
|
| 88 |
LOCAL(void) |
| 89 |
do_crop (j_decompress_ptr srcinfo, j_compress_ptr dstinfo, |
| 90 |
JDIMENSION x_crop_offset, JDIMENSION y_crop_offset, |
| 91 |
jvirt_barray_ptr *src_coef_arrays, |
| 92 |
jvirt_barray_ptr *dst_coef_arrays) |
| 93 |
/* Crop. This is only used when no rotate/flip is requested with the crop. */ |
| 94 |
{ |
| 95 |
JDIMENSION dst_blk_y, x_crop_blocks, y_crop_blocks; |
| 96 |
int ci, offset_y; |
| 97 |
JBLOCKARRAY src_buffer, dst_buffer; |
| 98 |
jpeg_component_info *compptr; |
| 99 |
|
| 100 |
/* We simply have to copy the right amount of data (the destination's |
| 101 |
* image size) starting at the given X and Y offsets in the source. |
| 102 |
*/ |
| 103 |
for (ci = 0; ci < dstinfo->num_components; ci++) { |
| 104 |
compptr = dstinfo->comp_info + ci; |
| 105 |
x_crop_blocks = x_crop_offset * compptr->h_samp_factor; |
| 106 |
y_crop_blocks = y_crop_offset * compptr->v_samp_factor; |
| 107 |
for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks; |
| 108 |
dst_blk_y += compptr->v_samp_factor) { |
| 109 |
dst_buffer = (*srcinfo->mem->access_virt_barray) |
| 110 |
((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y, |
| 111 |
(JDIMENSION) compptr->v_samp_factor, TRUE); |
| 112 |
src_buffer = (*srcinfo->mem->access_virt_barray) |
| 113 |
((j_common_ptr) srcinfo, src_coef_arrays[ci], |
| 114 |
dst_blk_y + y_crop_blocks, |
| 115 |
(JDIMENSION) compptr->v_samp_factor, FALSE); |
| 116 |
for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) { |
| 117 |
jcopy_block_row(src_buffer[offset_y] + x_crop_blocks, |
| 118 |
dst_buffer[offset_y], |
| 119 |
compptr->width_in_blocks); |
| 120 |
} |
| 121 |
} |
| 122 |
} |
| 123 |
} |
| 124 |
|
| 125 |
|
| 126 |
LOCAL(void) |
| 127 |
do_flip_h_no_crop (j_decompress_ptr srcinfo, j_compress_ptr dstinfo, |
| 128 |
JDIMENSION x_crop_offset, |
| 129 |
jvirt_barray_ptr *src_coef_arrays) |
| 130 |
/* Horizontal flip; done in-place, so no separate dest array is required. |
| 131 |
* NB: this only works when y_crop_offset is zero. |
| 132 |
*/ |
| 133 |
{ |
| 134 |
JDIMENSION MCU_cols, comp_width, blk_x, blk_y, x_crop_blocks; |
| 135 |
int ci, k, offset_y; |
| 136 |
JBLOCKARRAY buffer; |
| 137 |
JCOEFPTR ptr1, ptr2; |
| 138 |
JCOEF temp1, temp2; |
| 139 |
jpeg_component_info *compptr; |
| 140 |
|
| 141 |
/* Horizontal mirroring of DCT blocks is accomplished by swapping |
| 142 |
* pairs of blocks in-place. Within a DCT block, we perform horizontal |
| 143 |
* mirroring by changing the signs of odd-numbered columns. |
| 144 |
* Partial iMCUs at the right edge are left untouched. |
| 145 |
*/ |
| 146 |
MCU_cols = srcinfo->output_width / |
| 147 |
(dstinfo->max_h_samp_factor * dstinfo->min_DCT_h_scaled_size); |
| 148 |
|
| 149 |
for (ci = 0; ci < dstinfo->num_components; ci++) { |
| 150 |
compptr = dstinfo->comp_info + ci; |
| 151 |
comp_width = MCU_cols * compptr->h_samp_factor; |
| 152 |
x_crop_blocks = x_crop_offset * compptr->h_samp_factor; |
| 153 |
for (blk_y = 0; blk_y < compptr->height_in_blocks; |
| 154 |
blk_y += compptr->v_samp_factor) { |
| 155 |
buffer = (*srcinfo->mem->access_virt_barray) |
| 156 |
((j_common_ptr) srcinfo, src_coef_arrays[ci], blk_y, |
| 157 |
(JDIMENSION) compptr->v_samp_factor, TRUE); |
| 158 |
for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) { |
| 159 |
/* Do the mirroring */ |
| 160 |
for (blk_x = 0; blk_x * 2 < comp_width; blk_x++) { |
| 161 |
ptr1 = buffer[offset_y][blk_x]; |
| 162 |
ptr2 = buffer[offset_y][comp_width - blk_x - 1]; |
| 163 |
/* this unrolled loop doesn't need to know which row it's on... */ |
| 164 |
for (k = 0; k < DCTSIZE2; k += 2) { |
| 165 |
temp1 = *ptr1; /* swap even column */ |
| 166 |
temp2 = *ptr2; |
| 167 |
*ptr1++ = temp2; |
| 168 |
*ptr2++ = temp1; |
| 169 |
temp1 = *ptr1; /* swap odd column with sign change */ |
| 170 |
temp2 = *ptr2; |
| 171 |
*ptr1++ = -temp2; |
| 172 |
*ptr2++ = -temp1; |
| 173 |
} |
| 174 |
} |
| 175 |
if (x_crop_blocks > 0) { |
| 176 |
/* Now left-justify the portion of the data to be kept. |
| 177 |
* We can't use a single jcopy_block_row() call because that routine |
| 178 |
* depends on memcpy(), whose behavior is unspecified for overlapping |
| 179 |
* source and destination areas. Sigh. |
| 180 |
*/ |
| 181 |
for (blk_x = 0; blk_x < compptr->width_in_blocks; blk_x++) { |
| 182 |
jcopy_block_row(buffer[offset_y] + blk_x + x_crop_blocks, |
| 183 |
buffer[offset_y] + blk_x, |
| 184 |
(JDIMENSION) 1); |
| 185 |
} |
| 186 |
} |
| 187 |
} |
| 188 |
} |
| 189 |
} |
| 190 |
} |
| 191 |
|
| 192 |
|
| 193 |
LOCAL(void) |
| 194 |
do_flip_h (j_decompress_ptr srcinfo, j_compress_ptr dstinfo, |
| 195 |
JDIMENSION x_crop_offset, JDIMENSION y_crop_offset, |
| 196 |
jvirt_barray_ptr *src_coef_arrays, |
| 197 |
jvirt_barray_ptr *dst_coef_arrays) |
| 198 |
/* Horizontal flip in general cropping case */ |
| 199 |
{ |
| 200 |
JDIMENSION MCU_cols, comp_width, dst_blk_x, dst_blk_y; |
| 201 |
JDIMENSION x_crop_blocks, y_crop_blocks; |
| 202 |
int ci, k, offset_y; |
| 203 |
JBLOCKARRAY src_buffer, dst_buffer; |
| 204 |
JBLOCKROW src_row_ptr, dst_row_ptr; |
| 205 |
JCOEFPTR src_ptr, dst_ptr; |
| 206 |
jpeg_component_info *compptr; |
| 207 |
|
| 208 |
/* Here we must output into a separate array because we can't touch |
| 209 |
* different rows of a single virtual array simultaneously. Otherwise, |
| 210 |
* this is essentially the same as the routine above. |
| 211 |
*/ |
| 212 |
MCU_cols = srcinfo->output_width / |
| 213 |
(dstinfo->max_h_samp_factor * dstinfo->min_DCT_h_scaled_size); |
| 214 |
|
| 215 |
for (ci = 0; ci < dstinfo->num_components; ci++) { |
| 216 |
compptr = dstinfo->comp_info + ci; |
| 217 |
comp_width = MCU_cols * compptr->h_samp_factor; |
| 218 |
x_crop_blocks = x_crop_offset * compptr->h_samp_factor; |
| 219 |
y_crop_blocks = y_crop_offset * compptr->v_samp_factor; |
| 220 |
for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks; |
| 221 |
dst_blk_y += compptr->v_samp_factor) { |
| 222 |
dst_buffer = (*srcinfo->mem->access_virt_barray) |
| 223 |
((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y, |
| 224 |
(JDIMENSION) compptr->v_samp_factor, TRUE); |
| 225 |
src_buffer = (*srcinfo->mem->access_virt_barray) |
| 226 |
((j_common_ptr) srcinfo, src_coef_arrays[ci], |
| 227 |
dst_blk_y + y_crop_blocks, |
| 228 |
(JDIMENSION) compptr->v_samp_factor, FALSE); |
| 229 |
for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) { |
| 230 |
dst_row_ptr = dst_buffer[offset_y]; |
| 231 |
src_row_ptr = src_buffer[offset_y]; |
| 232 |
for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks; dst_blk_x++) { |
| 233 |
if (x_crop_blocks + dst_blk_x < comp_width) { |
| 234 |
/* Do the mirrorable blocks */ |
| 235 |
dst_ptr = dst_row_ptr[dst_blk_x]; |
| 236 |
src_ptr = src_row_ptr[comp_width - x_crop_blocks - dst_blk_x - 1]; |
| 237 |
/* this unrolled loop doesn't need to know which row it's on... */ |
| 238 |
for (k = 0; k < DCTSIZE2; k += 2) { |
| 239 |
*dst_ptr++ = *src_ptr++; /* copy even column */ |
| 240 |
*dst_ptr++ = - *src_ptr++; /* copy odd column with sign change */ |
| 241 |
} |
| 242 |
} else { |
| 243 |
/* Copy last partial block(s) verbatim */ |
| 244 |
jcopy_block_row(src_row_ptr + dst_blk_x + x_crop_blocks, |
| 245 |
dst_row_ptr + dst_blk_x, |
| 246 |
(JDIMENSION) 1); |
| 247 |
} |
| 248 |
} |
| 249 |
} |
| 250 |
} |
| 251 |
} |
| 252 |
} |
| 253 |
|
| 254 |
|
| 255 |
LOCAL(void) |
| 256 |
do_flip_v (j_decompress_ptr srcinfo, j_compress_ptr dstinfo, |
| 257 |
JDIMENSION x_crop_offset, JDIMENSION y_crop_offset, |
| 258 |
jvirt_barray_ptr *src_coef_arrays, |
| 259 |
jvirt_barray_ptr *dst_coef_arrays) |
| 260 |
/* Vertical flip */ |
| 261 |
{ |
| 262 |
JDIMENSION MCU_rows, comp_height, dst_blk_x, dst_blk_y; |
| 263 |
JDIMENSION x_crop_blocks, y_crop_blocks; |
| 264 |
int ci, i, j, offset_y; |
| 265 |
JBLOCKARRAY src_buffer, dst_buffer; |
| 266 |
JBLOCKROW src_row_ptr, dst_row_ptr; |
| 267 |
JCOEFPTR src_ptr, dst_ptr; |
| 268 |
jpeg_component_info *compptr; |
| 269 |
|
| 270 |
/* We output into a separate array because we can't touch different |
| 271 |
* rows of the source virtual array simultaneously. Otherwise, this |
| 272 |
* is a pretty straightforward analog of horizontal flip. |
| 273 |
* Within a DCT block, vertical mirroring is done by changing the signs |
| 274 |
* of odd-numbered rows. |
| 275 |
* Partial iMCUs at the bottom edge are copied verbatim. |
| 276 |
*/ |
| 277 |
MCU_rows = srcinfo->output_height / |
| 278 |
(dstinfo->max_v_samp_factor * dstinfo->min_DCT_v_scaled_size); |
| 279 |
|
| 280 |
for (ci = 0; ci < dstinfo->num_components; ci++) { |
| 281 |
compptr = dstinfo->comp_info + ci; |
| 282 |
comp_height = MCU_rows * compptr->v_samp_factor; |
| 283 |
x_crop_blocks = x_crop_offset * compptr->h_samp_factor; |
| 284 |
y_crop_blocks = y_crop_offset * compptr->v_samp_factor; |
| 285 |
for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks; |
| 286 |
dst_blk_y += compptr->v_samp_factor) { |
| 287 |
dst_buffer = (*srcinfo->mem->access_virt_barray) |
| 288 |
((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y, |
| 289 |
(JDIMENSION) compptr->v_samp_factor, TRUE); |
| 290 |
if (y_crop_blocks + dst_blk_y < comp_height) { |
| 291 |
/* Row is within the mirrorable area. */ |
| 292 |
src_buffer = (*srcinfo->mem->access_virt_barray) |
| 293 |
((j_common_ptr) srcinfo, src_coef_arrays[ci], |
| 294 |
comp_height - y_crop_blocks - dst_blk_y - |
| 295 |
(JDIMENSION) compptr->v_samp_factor, |
| 296 |
(JDIMENSION) compptr->v_samp_factor, FALSE); |
| 297 |
} else { |
| 298 |
/* Bottom-edge blocks will be copied verbatim. */ |
| 299 |
src_buffer = (*srcinfo->mem->access_virt_barray) |
| 300 |
((j_common_ptr) srcinfo, src_coef_arrays[ci], |
| 301 |
dst_blk_y + y_crop_blocks, |
| 302 |
(JDIMENSION) compptr->v_samp_factor, FALSE); |
| 303 |
} |
| 304 |
for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) { |
| 305 |
if (y_crop_blocks + dst_blk_y < comp_height) { |
| 306 |
/* Row is within the mirrorable area. */ |
| 307 |
dst_row_ptr = dst_buffer[offset_y]; |
| 308 |
src_row_ptr = src_buffer[compptr->v_samp_factor - offset_y - 1]; |
| 309 |
src_row_ptr += x_crop_blocks; |
| 310 |
for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks; |
| 311 |
dst_blk_x++) { |
| 312 |
dst_ptr = dst_row_ptr[dst_blk_x]; |
| 313 |
src_ptr = src_row_ptr[dst_blk_x]; |
| 314 |
for (i = 0; i < DCTSIZE; i += 2) { |
| 315 |
/* copy even row */ |
| 316 |
for (j = 0; j < DCTSIZE; j++) |
| 317 |
*dst_ptr++ = *src_ptr++; |
| 318 |
/* copy odd row with sign change */ |
| 319 |
for (j = 0; j < DCTSIZE; j++) |
| 320 |
*dst_ptr++ = - *src_ptr++; |
| 321 |
} |
| 322 |
} |
| 323 |
} else { |
| 324 |
/* Just copy row verbatim. */ |
| 325 |
jcopy_block_row(src_buffer[offset_y] + x_crop_blocks, |
| 326 |
dst_buffer[offset_y], |
| 327 |
compptr->width_in_blocks); |
| 328 |
} |
| 329 |
} |
| 330 |
} |
| 331 |
} |
| 332 |
} |
| 333 |
|
| 334 |
|
| 335 |
LOCAL(void) |
| 336 |
do_transpose (j_decompress_ptr srcinfo, j_compress_ptr dstinfo, |
| 337 |
JDIMENSION x_crop_offset, JDIMENSION y_crop_offset, |
| 338 |
jvirt_barray_ptr *src_coef_arrays, |
| 339 |
jvirt_barray_ptr *dst_coef_arrays) |
| 340 |
/* Transpose source into destination */ |
| 341 |
{ |
| 342 |
JDIMENSION dst_blk_x, dst_blk_y, x_crop_blocks, y_crop_blocks; |
| 343 |
int ci, i, j, offset_x, offset_y; |
| 344 |
JBLOCKARRAY src_buffer, dst_buffer; |
| 345 |
JCOEFPTR src_ptr, dst_ptr; |
| 346 |
jpeg_component_info *compptr; |
| 347 |
|
| 348 |
/* Transposing pixels within a block just requires transposing the |
| 349 |
* DCT coefficients. |
| 350 |
* Partial iMCUs at the edges require no special treatment; we simply |
| 351 |
* process all the available DCT blocks for every component. |
| 352 |
*/ |
| 353 |
for (ci = 0; ci < dstinfo->num_components; ci++) { |
| 354 |
compptr = dstinfo->comp_info + ci; |
| 355 |
x_crop_blocks = x_crop_offset * compptr->h_samp_factor; |
| 356 |
y_crop_blocks = y_crop_offset * compptr->v_samp_factor; |
| 357 |
for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks; |
| 358 |
dst_blk_y += compptr->v_samp_factor) { |
| 359 |
dst_buffer = (*srcinfo->mem->access_virt_barray) |
| 360 |
((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y, |
| 361 |
(JDIMENSION) compptr->v_samp_factor, TRUE); |
| 362 |
for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) { |
| 363 |
for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks; |
| 364 |
dst_blk_x += compptr->h_samp_factor) { |
| 365 |
src_buffer = (*srcinfo->mem->access_virt_barray) |
| 366 |
((j_common_ptr) srcinfo, src_coef_arrays[ci], |
| 367 |
dst_blk_x + x_crop_blocks, |
| 368 |
(JDIMENSION) compptr->h_samp_factor, FALSE); |
| 369 |
for (offset_x = 0; offset_x < compptr->h_samp_factor; offset_x++) { |
| 370 |
dst_ptr = dst_buffer[offset_y][dst_blk_x + offset_x]; |
| 371 |
src_ptr = src_buffer[offset_x][dst_blk_y + offset_y + y_crop_blocks]; |
| 372 |
for (i = 0; i < DCTSIZE; i++) |
| 373 |
for (j = 0; j < DCTSIZE; j++) |
| 374 |
dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j]; |
| 375 |
} |
| 376 |
} |
| 377 |
} |
| 378 |
} |
| 379 |
} |
| 380 |
} |
| 381 |
|
| 382 |
|
| 383 |
LOCAL(void) |
| 384 |
do_rot_90 (j_decompress_ptr srcinfo, j_compress_ptr dstinfo, |
| 385 |
JDIMENSION x_crop_offset, JDIMENSION y_crop_offset, |
| 386 |
jvirt_barray_ptr *src_coef_arrays, |
| 387 |
jvirt_barray_ptr *dst_coef_arrays) |
| 388 |
/* 90 degree rotation is equivalent to |
| 389 |
* 1. Transposing the image; |
| 390 |
* 2. Horizontal mirroring. |
| 391 |
* These two steps are merged into a single processing routine. |
| 392 |
*/ |
| 393 |
{ |
| 394 |
JDIMENSION MCU_cols, comp_width, dst_blk_x, dst_blk_y; |
| 395 |
JDIMENSION x_crop_blocks, y_crop_blocks; |
| 396 |
int ci, i, j, offset_x, offset_y; |
| 397 |
JBLOCKARRAY src_buffer, dst_buffer; |
| 398 |
JCOEFPTR src_ptr, dst_ptr; |
| 399 |
jpeg_component_info *compptr; |
| 400 |
|
| 401 |
/* Because of the horizontal mirror step, we can't process partial iMCUs |
| 402 |
* at the (output) right edge properly. They just get transposed and |
| 403 |
* not mirrored. |
| 404 |
*/ |
| 405 |
MCU_cols = srcinfo->output_height / |
| 406 |
(dstinfo->max_h_samp_factor * dstinfo->min_DCT_h_scaled_size); |
| 407 |
|
| 408 |
for (ci = 0; ci < dstinfo->num_components; ci++) { |
| 409 |
compptr = dstinfo->comp_info + ci; |
| 410 |
comp_width = MCU_cols * compptr->h_samp_factor; |
| 411 |
x_crop_blocks = x_crop_offset * compptr->h_samp_factor; |
| 412 |
y_crop_blocks = y_crop_offset * compptr->v_samp_factor; |
| 413 |
for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks; |
| 414 |
dst_blk_y += compptr->v_samp_factor) { |
| 415 |
dst_buffer = (*srcinfo->mem->access_virt_barray) |
| 416 |
((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y, |
| 417 |
(JDIMENSION) compptr->v_samp_factor, TRUE); |
| 418 |
for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) { |
| 419 |
for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks; |
| 420 |
dst_blk_x += compptr->h_samp_factor) { |
| 421 |
if (x_crop_blocks + dst_blk_x < comp_width) { |
| 422 |
/* Block is within the mirrorable area. */ |
| 423 |
src_buffer = (*srcinfo->mem->access_virt_barray) |
| 424 |
((j_common_ptr) srcinfo, src_coef_arrays[ci], |
| 425 |
comp_width - x_crop_blocks - dst_blk_x - |
| 426 |
(JDIMENSION) compptr->h_samp_factor, |
| 427 |
(JDIMENSION) compptr->h_samp_factor, FALSE); |
| 428 |
} else { |
| 429 |
/* Edge blocks are transposed but not mirrored. */ |
| 430 |
src_buffer = (*srcinfo->mem->access_virt_barray) |
| 431 |
((j_common_ptr) srcinfo, src_coef_arrays[ci], |
| 432 |
dst_blk_x + x_crop_blocks, |
| 433 |
(JDIMENSION) compptr->h_samp_factor, FALSE); |
| 434 |
} |
| 435 |
for (offset_x = 0; offset_x < compptr->h_samp_factor; offset_x++) { |
| 436 |
dst_ptr = dst_buffer[offset_y][dst_blk_x + offset_x]; |
| 437 |
if (x_crop_blocks + dst_blk_x < comp_width) { |
| 438 |
/* Block is within the mirrorable area. */ |
| 439 |
src_ptr = src_buffer[compptr->h_samp_factor - offset_x - 1] |
| 440 |
[dst_blk_y + offset_y + y_crop_blocks]; |
| 441 |
for (i = 0; i < DCTSIZE; i++) { |
| 442 |
for (j = 0; j < DCTSIZE; j++) |
| 443 |
dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j]; |
| 444 |
i++; |
| 445 |
for (j = 0; j < DCTSIZE; j++) |
| 446 |
dst_ptr[j*DCTSIZE+i] = -src_ptr[i*DCTSIZE+j]; |
| 447 |
} |
| 448 |
} else { |
| 449 |
/* Edge blocks are transposed but not mirrored. */ |
| 450 |
src_ptr = src_buffer[offset_x] |
| 451 |
[dst_blk_y + offset_y + y_crop_blocks]; |
| 452 |
for (i = 0; i < DCTSIZE; i++) |
| 453 |
for (j = 0; j < DCTSIZE; j++) |
| 454 |
dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j]; |
| 455 |
} |
| 456 |
} |
| 457 |
} |
| 458 |
} |
| 459 |
} |
| 460 |
} |
| 461 |
} |
| 462 |
|
| 463 |
|
| 464 |
LOCAL(void) |
| 465 |
do_rot_270 (j_decompress_ptr srcinfo, j_compress_ptr dstinfo, |
| 466 |
JDIMENSION x_crop_offset, JDIMENSION y_crop_offset, |
| 467 |
jvirt_barray_ptr *src_coef_arrays, |
| 468 |
jvirt_barray_ptr *dst_coef_arrays) |
| 469 |
/* 270 degree rotation is equivalent to |
| 470 |
* 1. Horizontal mirroring; |
| 471 |
* 2. Transposing the image. |
| 472 |
* These two steps are merged into a single processing routine. |
| 473 |
*/ |
| 474 |
{ |
| 475 |
JDIMENSION MCU_rows, comp_height, dst_blk_x, dst_blk_y; |
| 476 |
JDIMENSION x_crop_blocks, y_crop_blocks; |
| 477 |
int ci, i, j, offset_x, offset_y; |
| 478 |
JBLOCKARRAY src_buffer, dst_buffer; |
| 479 |
JCOEFPTR src_ptr, dst_ptr; |
| 480 |
jpeg_component_info *compptr; |
| 481 |
|
| 482 |
/* Because of the horizontal mirror step, we can't process partial iMCUs |
| 483 |
* at the (output) bottom edge properly. They just get transposed and |
| 484 |
* not mirrored. |
| 485 |
*/ |
| 486 |
MCU_rows = srcinfo->output_width / |
| 487 |
(dstinfo->max_v_samp_factor * dstinfo->min_DCT_v_scaled_size); |
| 488 |
|
| 489 |
for (ci = 0; ci < dstinfo->num_components; ci++) { |
| 490 |
compptr = dstinfo->comp_info + ci; |
| 491 |
comp_height = MCU_rows * compptr->v_samp_factor; |
| 492 |
x_crop_blocks = x_crop_offset * compptr->h_samp_factor; |
| 493 |
y_crop_blocks = y_crop_offset * compptr->v_samp_factor; |
| 494 |
for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks; |
| 495 |
dst_blk_y += compptr->v_samp_factor) { |
| 496 |
dst_buffer = (*srcinfo->mem->access_virt_barray) |
| 497 |
((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y, |
| 498 |
(JDIMENSION) compptr->v_samp_factor, TRUE); |
| 499 |
for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) { |
| 500 |
for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks; |
| 501 |
dst_blk_x += compptr->h_samp_factor) { |
| 502 |
src_buffer = (*srcinfo->mem->access_virt_barray) |
| 503 |
((j_common_ptr) srcinfo, src_coef_arrays[ci], |
| 504 |
dst_blk_x + x_crop_blocks, |
| 505 |
(JDIMENSION) compptr->h_samp_factor, FALSE); |
| 506 |
for (offset_x = 0; offset_x < compptr->h_samp_factor; offset_x++) { |
| 507 |
dst_ptr = dst_buffer[offset_y][dst_blk_x + offset_x]; |
| 508 |
if (y_crop_blocks + dst_blk_y < comp_height) { |
| 509 |
/* Block is within the mirrorable area. */ |
| 510 |
src_ptr = src_buffer[offset_x] |
| 511 |
[comp_height - y_crop_blocks - dst_blk_y - offset_y - 1]; |
| 512 |
for (i = 0; i < DCTSIZE; i++) { |
| 513 |
for (j = 0; j < DCTSIZE; j++) { |
| 514 |
dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j]; |
| 515 |
j++; |
| 516 |
dst_ptr[j*DCTSIZE+i] = -src_ptr[i*DCTSIZE+j]; |
| 517 |
} |
| 518 |
} |
| 519 |
} else { |
| 520 |
/* Edge blocks are transposed but not mirrored. */ |
| 521 |
src_ptr = src_buffer[offset_x] |
| 522 |
[dst_blk_y + offset_y + y_crop_blocks]; |
| 523 |
for (i = 0; i < DCTSIZE; i++) |
| 524 |
for (j = 0; j < DCTSIZE; j++) |
| 525 |
dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j]; |
| 526 |
} |
| 527 |
} |
| 528 |
} |
| 529 |
} |
| 530 |
} |
| 531 |
} |
| 532 |
} |
| 533 |
|
| 534 |
|
| 535 |
LOCAL(void) |
| 536 |
do_rot_180 (j_decompress_ptr srcinfo, j_compress_ptr dstinfo, |
| 537 |
JDIMENSION x_crop_offset, JDIMENSION y_crop_offset, |
| 538 |
jvirt_barray_ptr *src_coef_arrays, |
| 539 |
jvirt_barray_ptr *dst_coef_arrays) |
| 540 |
/* 180 degree rotation is equivalent to |
| 541 |
* 1. Vertical mirroring; |
| 542 |
* 2. Horizontal mirroring. |
| 543 |
* These two steps are merged into a single processing routine. |
| 544 |
*/ |
| 545 |
{ |
| 546 |
JDIMENSION MCU_cols, MCU_rows, comp_width, comp_height, dst_blk_x, dst_blk_y; |
| 547 |
JDIMENSION x_crop_blocks, y_crop_blocks; |
| 548 |
int ci, i, j, offset_y; |
| 549 |
JBLOCKARRAY src_buffer, dst_buffer; |
| 550 |
JBLOCKROW src_row_ptr, dst_row_ptr; |
| 551 |
JCOEFPTR src_ptr, dst_ptr; |
| 552 |
jpeg_component_info *compptr; |
| 553 |
|
| 554 |
MCU_cols = srcinfo->output_width / |
| 555 |
(dstinfo->max_h_samp_factor * dstinfo->min_DCT_h_scaled_size); |
| 556 |
MCU_rows = srcinfo->output_height / |
| 557 |
(dstinfo->max_v_samp_factor * dstinfo->min_DCT_v_scaled_size); |
| 558 |
|
| 559 |
for (ci = 0; ci < dstinfo->num_components; ci++) { |
| 560 |
compptr = dstinfo->comp_info + ci; |
| 561 |
comp_width = MCU_cols * compptr->h_samp_factor; |
| 562 |
comp_height = MCU_rows * compptr->v_samp_factor; |
| 563 |
x_crop_blocks = x_crop_offset * compptr->h_samp_factor; |
| 564 |
y_crop_blocks = y_crop_offset * compptr->v_samp_factor; |
| 565 |
for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks; |
| 566 |
dst_blk_y += compptr->v_samp_factor) { |
| 567 |
dst_buffer = (*srcinfo->mem->access_virt_barray) |
| 568 |
((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y, |
| 569 |
(JDIMENSION) compptr->v_samp_factor, TRUE); |
| 570 |
if (y_crop_blocks + dst_blk_y < comp_height) { |
| 571 |
/* Row is within the vertically mirrorable area. */ |
| 572 |
src_buffer = (*srcinfo->mem->access_virt_barray) |
| 573 |
((j_common_ptr) srcinfo, src_coef_arrays[ci], |
| 574 |
comp_height - y_crop_blocks - dst_blk_y - |
| 575 |
(JDIMENSION) compptr->v_samp_factor, |
| 576 |
(JDIMENSION) compptr->v_samp_factor, FALSE); |
| 577 |
} else { |
| 578 |
/* Bottom-edge rows are only mirrored horizontally. */ |
| 579 |
src_buffer = (*srcinfo->mem->access_virt_barray) |
| 580 |
((j_common_ptr) srcinfo, src_coef_arrays[ci], |
| 581 |
dst_blk_y + y_crop_blocks, |
| 582 |
(JDIMENSION) compptr->v_samp_factor, FALSE); |
| 583 |
} |
| 584 |
for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) { |
| 585 |
dst_row_ptr = dst_buffer[offset_y]; |
| 586 |
if (y_crop_blocks + dst_blk_y < comp_height) { |
| 587 |
/* Row is within the mirrorable area. */ |
| 588 |
src_row_ptr = src_buffer[compptr->v_samp_factor - offset_y - 1]; |
| 589 |
for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks; dst_blk_x++) { |
| 590 |
dst_ptr = dst_row_ptr[dst_blk_x]; |
| 591 |
if (x_crop_blocks + dst_blk_x < comp_width) { |
| 592 |
/* Process the blocks that can be mirrored both ways. */ |
| 593 |
src_ptr = src_row_ptr[comp_width - x_crop_blocks - dst_blk_x - 1]; |
| 594 |
for (i = 0; i < DCTSIZE; i += 2) { |
| 595 |
/* For even row, negate every odd column. */ |
| 596 |
for (j = 0; j < DCTSIZE; j += 2) { |
| 597 |
*dst_ptr++ = *src_ptr++; |
| 598 |
*dst_ptr++ = - *src_ptr++; |
| 599 |
} |
| 600 |
/* For odd row, negate every even column. */ |
| 601 |
for (j = 0; j < DCTSIZE; j += 2) { |
| 602 |
*dst_ptr++ = - *src_ptr++; |
| 603 |
*dst_ptr++ = *src_ptr++; |
| 604 |
} |
| 605 |
} |
| 606 |
} else { |
| 607 |
/* Any remaining right-edge blocks are only mirrored vertically. */ |
| 608 |
src_ptr = src_row_ptr[x_crop_blocks + dst_blk_x]; |
| 609 |
for (i = 0; i < DCTSIZE; i += 2) { |
| 610 |
for (j = 0; j < DCTSIZE; j++) |
| 611 |
*dst_ptr++ = *src_ptr++; |
| 612 |
for (j = 0; j < DCTSIZE; j++) |
| 613 |
*dst_ptr++ = - *src_ptr++; |
| 614 |
} |
| 615 |
} |
| 616 |
} |
| 617 |
} else { |
| 618 |
/* Remaining rows are just mirrored horizontally. */ |
| 619 |
src_row_ptr = src_buffer[offset_y]; |
| 620 |
for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks; dst_blk_x++) { |
| 621 |
if (x_crop_blocks + dst_blk_x < comp_width) { |
| 622 |
/* Process the blocks that can be mirrored. */ |
| 623 |
dst_ptr = dst_row_ptr[dst_blk_x]; |
| 624 |
src_ptr = src_row_ptr[comp_width - x_crop_blocks - dst_blk_x - 1]; |
| 625 |
for (i = 0; i < DCTSIZE2; i += 2) { |
| 626 |
*dst_ptr++ = *src_ptr++; |
| 627 |
*dst_ptr++ = - *src_ptr++; |
| 628 |
} |
| 629 |
} else { |
| 630 |
/* Any remaining right-edge blocks are only copied. */ |
| 631 |
jcopy_block_row(src_row_ptr + dst_blk_x + x_crop_blocks, |
| 632 |
dst_row_ptr + dst_blk_x, |
| 633 |
(JDIMENSION) 1); |
| 634 |
} |
| 635 |
} |
| 636 |
} |
| 637 |
} |
| 638 |
} |
| 639 |
} |
| 640 |
} |
| 641 |
|
| 642 |
|
| 643 |
LOCAL(void) |
| 644 |
do_transverse (j_decompress_ptr srcinfo, j_compress_ptr dstinfo, |
| 645 |
JDIMENSION x_crop_offset, JDIMENSION y_crop_offset, |
| 646 |
jvirt_barray_ptr *src_coef_arrays, |
| 647 |
jvirt_barray_ptr *dst_coef_arrays) |
| 648 |
/* Transverse transpose is equivalent to |
| 649 |
* 1. 180 degree rotation; |
| 650 |
* 2. Transposition; |
| 651 |
* or |
| 652 |
* 1. Horizontal mirroring; |
| 653 |
* 2. Transposition; |
| 654 |
* 3. Horizontal mirroring. |
| 655 |
* These steps are merged into a single processing routine. |
| 656 |
*/ |
| 657 |
{ |
| 658 |
JDIMENSION MCU_cols, MCU_rows, comp_width, comp_height, dst_blk_x, dst_blk_y; |
| 659 |
JDIMENSION x_crop_blocks, y_crop_blocks; |
| 660 |
int ci, i, j, offset_x, offset_y; |
| 661 |
JBLOCKARRAY src_buffer, dst_buffer; |
| 662 |
JCOEFPTR src_ptr, dst_ptr; |
| 663 |
jpeg_component_info *compptr; |
| 664 |
|
| 665 |
MCU_cols = srcinfo->output_height / |
| 666 |
(dstinfo->max_h_samp_factor * dstinfo->min_DCT_h_scaled_size); |
| 667 |
MCU_rows = srcinfo->output_width / |
| 668 |
(dstinfo->max_v_samp_factor * dstinfo->min_DCT_v_scaled_size); |
| 669 |
|
| 670 |
for (ci = 0; ci < dstinfo->num_components; ci++) { |
| 671 |
compptr = dstinfo->comp_info + ci; |
| 672 |
comp_width = MCU_cols * compptr->h_samp_factor; |
| 673 |
comp_height = MCU_rows * compptr->v_samp_factor; |
| 674 |
x_crop_blocks = x_crop_offset * compptr->h_samp_factor; |
| 675 |
y_crop_blocks = y_crop_offset * compptr->v_samp_factor; |
| 676 |
for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks; |
| 677 |
dst_blk_y += compptr->v_samp_factor) { |
| 678 |
dst_buffer = (*srcinfo->mem->access_virt_barray) |
| 679 |
((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y, |
| 680 |
(JDIMENSION) compptr->v_samp_factor, TRUE); |
| 681 |
for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) { |
| 682 |
for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks; |
| 683 |
dst_blk_x += compptr->h_samp_factor) { |
| 684 |
if (x_crop_blocks + dst_blk_x < comp_width) { |
| 685 |
/* Block is within the mirrorable area. */ |
| 686 |
src_buffer = (*srcinfo->mem->access_virt_barray) |
| 687 |
((j_common_ptr) srcinfo, src_coef_arrays[ci], |
| 688 |
comp_width - x_crop_blocks - dst_blk_x - |
| 689 |
(JDIMENSION) compptr->h_samp_factor, |
| 690 |
(JDIMENSION) compptr->h_samp_factor, FALSE); |
| 691 |
} else { |
| 692 |
src_buffer = (*srcinfo->mem->access_virt_barray) |
| 693 |
((j_common_ptr) srcinfo, src_coef_arrays[ci], |
| 694 |
dst_blk_x + x_crop_blocks, |
| 695 |
(JDIMENSION) compptr->h_samp_factor, FALSE); |
| 696 |
} |
| 697 |
for (offset_x = 0; offset_x < compptr->h_samp_factor; offset_x++) { |
| 698 |
dst_ptr = dst_buffer[offset_y][dst_blk_x + offset_x]; |
| 699 |
if (y_crop_blocks + dst_blk_y < comp_height) { |
| 700 |
if (x_crop_blocks + dst_blk_x < comp_width) { |
| 701 |
/* Block is within the mirrorable area. */ |
| 702 |
src_ptr = src_buffer[compptr->h_samp_factor - offset_x - 1] |
| 703 |
[comp_height - y_crop_blocks - dst_blk_y - offset_y - 1]; |
| 704 |
for (i = 0; i < DCTSIZE; i++) { |
| 705 |
for (j = 0; j < DCTSIZE; j++) { |
| 706 |
dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j]; |
| 707 |
j++; |
| 708 |
dst_ptr[j*DCTSIZE+i] = -src_ptr[i*DCTSIZE+j]; |
| 709 |
} |
| 710 |
i++; |
| 711 |
for (j = 0; j < DCTSIZE; j++) { |
| 712 |
dst_ptr[j*DCTSIZE+i] = -src_ptr[i*DCTSIZE+j]; |
| 713 |
j++; |
| 714 |
dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j]; |
| 715 |
} |
| 716 |
} |
| 717 |
} else { |
| 718 |
/* Right-edge blocks are mirrored in y only */ |
| 719 |
src_ptr = src_buffer[offset_x] |
| 720 |
[comp_height - y_crop_blocks - dst_blk_y - offset_y - 1]; |
| 721 |
for (i = 0; i < DCTSIZE; i++) { |
| 722 |
for (j = 0; j < DCTSIZE; j++) { |
| 723 |
dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j]; |
| 724 |
j++; |
| 725 |
dst_ptr[j*DCTSIZE+i] = -src_ptr[i*DCTSIZE+j]; |
| 726 |
} |
| 727 |
} |
| 728 |
} |
| 729 |
} else { |
| 730 |
if (x_crop_blocks + dst_blk_x < comp_width) { |
| 731 |
/* Bottom-edge blocks are mirrored in x only */ |
| 732 |
src_ptr = src_buffer[compptr->h_samp_factor - offset_x - 1] |
| 733 |
[dst_blk_y + offset_y + y_crop_blocks]; |
| 734 |
for (i = 0; i < DCTSIZE; i++) { |
| 735 |
for (j = 0; j < DCTSIZE; j++) |
| 736 |
dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j]; |
| 737 |
i++; |
| 738 |
for (j = 0; j < DCTSIZE; j++) |
| 739 |
dst_ptr[j*DCTSIZE+i] = -src_ptr[i*DCTSIZE+j]; |
| 740 |
} |
| 741 |
} else { |
| 742 |
/* At lower right corner, just transpose, no mirroring */ |
| 743 |
src_ptr = src_buffer[offset_x] |
| 744 |
[dst_blk_y + offset_y + y_crop_blocks]; |
| 745 |
for (i = 0; i < DCTSIZE; i++) |
| 746 |
for (j = 0; j < DCTSIZE; j++) |
| 747 |
dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j]; |
| 748 |
} |
| 749 |
} |
| 750 |
} |
| 751 |
} |
| 752 |
} |
| 753 |
} |
| 754 |
} |
| 755 |
} |
| 756 |
|
| 757 |
|
| 758 |
/* Parse an unsigned integer: subroutine for jtransform_parse_crop_spec. |
| 759 |
* Returns TRUE if valid integer found, FALSE if not. |
| 760 |
* *strptr is advanced over the digit string, and *result is set to its value. |
| 761 |
*/ |
| 762 |
|
| 763 |
LOCAL(boolean) |
| 764 |
jt_read_integer (const char ** strptr, JDIMENSION * result) |
| 765 |
{ |
| 766 |
const char * ptr = *strptr; |
| 767 |
JDIMENSION val = 0; |
| 768 |
|
| 769 |
for (; isdigit(*ptr); ptr++) { |
| 770 |
val = val * 10 + (JDIMENSION) (*ptr - '0'); |
| 771 |
} |
| 772 |
*result = val; |
| 773 |
if (ptr == *strptr) |
| 774 |
return FALSE; /* oops, no digits */ |
| 775 |
*strptr = ptr; |
| 776 |
return TRUE; |
| 777 |
} |
| 778 |
|
| 779 |
|
| 780 |
/* Parse a crop specification (written in X11 geometry style). |
| 781 |
* The routine returns TRUE if the spec string is valid, FALSE if not. |
| 782 |
* |
| 783 |
* The crop spec string should have the format |
| 784 |
* <width>x<height>{+-}<xoffset>{+-}<yoffset> |
| 785 |
* where width, height, xoffset, and yoffset are unsigned integers. |
| 786 |
* Each of the elements can be omitted to indicate a default value. |
| 787 |
* (A weakness of this style is that it is not possible to omit xoffset |
| 788 |
* while specifying yoffset, since they look alike.) |
| 789 |
* |
| 790 |
* This code is loosely based on XParseGeometry from the X11 distribution. |
| 791 |
*/ |
| 792 |
|
| 793 |
GLOBAL(boolean) |
| 794 |
jtransform_parse_crop_spec (jpeg_transform_info *info, const char *spec) |
| 795 |
{ |
| 796 |
info->crop = FALSE; |
| 797 |
info->crop_width_set = JCROP_UNSET; |
| 798 |
info->crop_height_set = JCROP_UNSET; |
| 799 |
info->crop_xoffset_set = JCROP_UNSET; |
| 800 |
info->crop_yoffset_set = JCROP_UNSET; |
| 801 |
|
| 802 |
if (isdigit(*spec)) { |
| 803 |
/* fetch width */ |
| 804 |
if (! jt_read_integer(&spec, &info->crop_width)) |
| 805 |
return FALSE; |
| 806 |
info->crop_width_set = JCROP_POS; |
| 807 |
} |
| 808 |
if (*spec == 'x' || *spec == 'X') { |
| 809 |
/* fetch height */ |
| 810 |
spec++; |
| 811 |
if (! jt_read_integer(&spec, &info->crop_height)) |
| 812 |
return FALSE; |
| 813 |
info->crop_height_set = JCROP_POS; |
| 814 |
} |
| 815 |
if (*spec == '+' || *spec == '-') { |
| 816 |
/* fetch xoffset */ |
| 817 |
info->crop_xoffset_set = (*spec == '-') ? JCROP_NEG : JCROP_POS; |
| 818 |
spec++; |
| 819 |
if (! jt_read_integer(&spec, &info->crop_xoffset)) |
| 820 |
return FALSE; |
| 821 |
} |
| 822 |
if (*spec == '+' || *spec == '-') { |
| 823 |
/* fetch yoffset */ |
| 824 |
info->crop_yoffset_set = (*spec == '-') ? JCROP_NEG : JCROP_POS; |
| 825 |
spec++; |
| 826 |
if (! jt_read_integer(&spec, &info->crop_yoffset)) |
| 827 |
return FALSE; |
| 828 |
} |
| 829 |
/* We had better have gotten to the end of the string. */ |
| 830 |
if (*spec != '\0') |
| 831 |
return FALSE; |
| 832 |
info->crop = TRUE; |
| 833 |
return TRUE; |
| 834 |
} |
| 835 |
|
| 836 |
|
| 837 |
/* Trim off any partial iMCUs on the indicated destination edge */ |
| 838 |
|
| 839 |
LOCAL(void) |
| 840 |
trim_right_edge (jpeg_transform_info *info, JDIMENSION full_width) |
| 841 |
{ |
| 842 |
JDIMENSION MCU_cols; |
| 843 |
|
| 844 |
MCU_cols = info->output_width / info->iMCU_sample_width; |
| 845 |
if (MCU_cols > 0 && info->x_crop_offset + MCU_cols == |
| 846 |
full_width / info->iMCU_sample_width) |
| 847 |
info->output_width = MCU_cols * info->iMCU_sample_width; |
| 848 |
} |
| 849 |
|
| 850 |
LOCAL(void) |
| 851 |
trim_bottom_edge (jpeg_transform_info *info, JDIMENSION full_height) |
| 852 |
{ |
| 853 |
JDIMENSION MCU_rows; |
| 854 |
|
| 855 |
MCU_rows = info->output_height / info->iMCU_sample_height; |
| 856 |
if (MCU_rows > 0 && info->y_crop_offset + MCU_rows == |
| 857 |
full_height / info->iMCU_sample_height) |
| 858 |
info->output_height = MCU_rows * info->iMCU_sample_height; |
| 859 |
} |
| 860 |
|
| 861 |
|
| 862 |
/* Request any required workspace. |
| 863 |
* |
| 864 |
* This routine figures out the size that the output image will be |
| 865 |
* (which implies that all the transform parameters must be set before |
| 866 |
* it is called). |
| 867 |
* |
| 868 |
* We allocate the workspace virtual arrays from the source decompression |
| 869 |
* object, so that all the arrays (both the original data and the workspace) |
| 870 |
* will be taken into account while making memory management decisions. |
| 871 |
* Hence, this routine must be called after jpeg_read_header (which reads |
| 872 |
* the image dimensions) and before jpeg_read_coefficients (which realizes |
| 873 |
* the source's virtual arrays). |
| 874 |
* |
| 875 |
* This function returns FALSE right away if -perfect is given |
| 876 |
* and transformation is not perfect. Otherwise returns TRUE. |
| 877 |
*/ |
| 878 |
|
| 879 |
GLOBAL(boolean) |
| 880 |
jtransform_request_workspace (j_decompress_ptr srcinfo, |
| 881 |
jpeg_transform_info *info) |
| 882 |
{ |
| 883 |
jvirt_barray_ptr *coef_arrays; |
| 884 |
boolean need_workspace, transpose_it; |
| 885 |
jpeg_component_info *compptr; |
| 886 |
JDIMENSION xoffset, yoffset; |
| 887 |
JDIMENSION width_in_iMCUs, height_in_iMCUs; |
| 888 |
JDIMENSION width_in_blocks, height_in_blocks; |
| 889 |
int ci, h_samp_factor, v_samp_factor; |
| 890 |
|
| 891 |
/* Determine number of components in output image */ |
| 892 |
if (info->force_grayscale && |
| 893 |
srcinfo->jpeg_color_space == JCS_YCbCr && |
| 894 |
srcinfo->num_components == 3) |
| 895 |
/* We'll only process the first component */ |
| 896 |
info->num_components = 1; |
| 897 |
else |
| 898 |
/* Process all the components */ |
| 899 |
info->num_components = srcinfo->num_components; |
| 900 |
|
| 901 |
/* Compute output image dimensions and related values. */ |
| 902 |
jpeg_core_output_dimensions(srcinfo); |
| 903 |
|
| 904 |
/* Return right away if -perfect is given and transformation is not perfect. |
| 905 |
*/ |
| 906 |
if (info->perfect) { |
| 907 |
if (info->num_components == 1) { |
| 908 |
if (!jtransform_perfect_transform(srcinfo->output_width, |
| 909 |
srcinfo->output_height, |
| 910 |
srcinfo->min_DCT_h_scaled_size, |
| 911 |
srcinfo->min_DCT_v_scaled_size, |
| 912 |
info->transform)) |
| 913 |
return FALSE; |
| 914 |
} else { |
| 915 |
if (!jtransform_perfect_transform(srcinfo->output_width, |
| 916 |
srcinfo->output_height, |
| 917 |
srcinfo->max_h_samp_factor * srcinfo->min_DCT_h_scaled_size, |
| 918 |
srcinfo->max_v_samp_factor * srcinfo->min_DCT_v_scaled_size, |
| 919 |
info->transform)) |
| 920 |
return FALSE; |
| 921 |
} |
| 922 |
} |
| 923 |
|
| 924 |
/* If there is only one output component, force the iMCU size to be 1; |
| 925 |
* else use the source iMCU size. (This allows us to do the right thing |
| 926 |
* when reducing color to grayscale, and also provides a handy way of |
| 927 |
* cleaning up "funny" grayscale images whose sampling factors are not 1x1.) |
| 928 |
*/ |
| 929 |
switch (info->transform) { |
| 930 |
case JXFORM_TRANSPOSE: |
| 931 |
case JXFORM_TRANSVERSE: |
| 932 |
case JXFORM_ROT_90: |
| 933 |
case JXFORM_ROT_270: |
| 934 |
info->output_width = srcinfo->output_height; |
| 935 |
info->output_height = srcinfo->output_width; |
| 936 |
if (info->num_components == 1) { |
| 937 |
info->iMCU_sample_width = srcinfo->min_DCT_v_scaled_size; |
| 938 |
info->iMCU_sample_height = srcinfo->min_DCT_h_scaled_size; |
| 939 |
} else { |
| 940 |
info->iMCU_sample_width = |
| 941 |
srcinfo->max_v_samp_factor * srcinfo->min_DCT_v_scaled_size; |
| 942 |
info->iMCU_sample_height = |
| 943 |
srcinfo->max_h_samp_factor * srcinfo->min_DCT_h_scaled_size; |
| 944 |
} |
| 945 |
break; |
| 946 |
default: |
| 947 |
info->output_width = srcinfo->output_width; |
| 948 |
info->output_height = srcinfo->output_height; |
| 949 |
if (info->num_components == 1) { |
| 950 |
info->iMCU_sample_width = srcinfo->min_DCT_h_scaled_size; |
| 951 |
info->iMCU_sample_height = srcinfo->min_DCT_v_scaled_size; |
| 952 |
} else { |
| 953 |
info->iMCU_sample_width = |
| 954 |
srcinfo->max_h_samp_factor * srcinfo->min_DCT_h_scaled_size; |
| 955 |
info->iMCU_sample_height = |
| 956 |
srcinfo->max_v_samp_factor * srcinfo->min_DCT_v_scaled_size; |
| 957 |
} |
| 958 |
break; |
| 959 |
} |
| 960 |
|
| 961 |
/* If cropping has been requested, compute the crop area's position and |
| 962 |
* dimensions, ensuring that its upper left corner falls at an iMCU boundary. |
| 963 |
*/ |
| 964 |
if (info->crop) { |
| 965 |
/* Insert default values for unset crop parameters */ |
| 966 |
if (info->crop_xoffset_set == JCROP_UNSET) |
| 967 |
info->crop_xoffset = 0; /* default to +0 */ |
| 968 |
if (info->crop_yoffset_set == JCROP_UNSET) |
| 969 |
info->crop_yoffset = 0; /* default to +0 */ |
| 970 |
if (info->crop_xoffset >= info->output_width || |
| 971 |
info->crop_yoffset >= info->output_height) |
| 972 |
ERREXIT(srcinfo, JERR_BAD_CROP_SPEC); |
| 973 |
if (info->crop_width_set == JCROP_UNSET) |
| 974 |
info->crop_width = info->output_width - info->crop_xoffset; |
| 975 |
if (info->crop_height_set == JCROP_UNSET) |
| 976 |
info->crop_height = info->output_height - info->crop_yoffset; |
| 977 |
/* Ensure parameters are valid */ |
| 978 |
if (info->crop_width <= 0 || info->crop_width > info->output_width || |
| 979 |
info->crop_height <= 0 || info->crop_height > info->output_height || |
| 980 |
info->crop_xoffset > info->output_width - info->crop_width || |
| 981 |
info->crop_yoffset > info->output_height - info->crop_height) |
| 982 |
ERREXIT(srcinfo, JERR_BAD_CROP_SPEC); |
| 983 |
/* Convert negative crop offsets into regular offsets */ |
| 984 |
if (info->crop_xoffset_set == JCROP_NEG) |
| 985 |
xoffset = info->output_width - info->crop_width - info->crop_xoffset; |
| 986 |
else |
| 987 |
xoffset = info->crop_xoffset; |
| 988 |
if (info->crop_yoffset_set == JCROP_NEG) |
| 989 |
yoffset = info->output_height - info->crop_height - info->crop_yoffset; |
| 990 |
else |
| 991 |
yoffset = info->crop_yoffset; |
| 992 |
/* Now adjust so that upper left corner falls at an iMCU boundary */ |
| 993 |
info->output_width = |
| 994 |
info->crop_width + (xoffset % info->iMCU_sample_width); |
| 995 |
info->output_height = |
| 996 |
info->crop_height + (yoffset % info->iMCU_sample_height); |
| 997 |
/* Save x/y offsets measured in iMCUs */ |
| 998 |
info->x_crop_offset = xoffset / info->iMCU_sample_width; |
| 999 |
info->y_crop_offset = yoffset / info->iMCU_sample_height; |
| 1000 |
} else { |
| 1001 |
info->x_crop_offset = 0; |
| 1002 |
info->y_crop_offset = 0; |
| 1003 |
} |
| 1004 |
|
| 1005 |
/* Figure out whether we need workspace arrays, |
| 1006 |
* and if so whether they are transposed relative to the source. |
| 1007 |
*/ |
| 1008 |
need_workspace = FALSE; |
| 1009 |
transpose_it = FALSE; |
| 1010 |
switch (info->transform) { |
| 1011 |
case JXFORM_NONE: |
| 1012 |
if (info->x_crop_offset != 0 || info->y_crop_offset != 0) |
| 1013 |
need_workspace = TRUE; |
| 1014 |
/* No workspace needed if neither cropping nor transforming */ |
| 1015 |
break; |
| 1016 |
case JXFORM_FLIP_H: |
| 1017 |
if (info->trim) |
| 1018 |
trim_right_edge(info, srcinfo->output_width); |
| 1019 |
if (info->y_crop_offset != 0) |
| 1020 |
need_workspace = TRUE; |
| 1021 |
/* do_flip_h_no_crop doesn't need a workspace array */ |
| 1022 |
break; |
| 1023 |
case JXFORM_FLIP_V: |
| 1024 |
if (info->trim) |
| 1025 |
trim_bottom_edge(info, srcinfo->output_height); |
| 1026 |
/* Need workspace arrays having same dimensions as source image. */ |
| 1027 |
need_workspace = TRUE; |
| 1028 |
break; |
| 1029 |
case JXFORM_TRANSPOSE: |
| 1030 |
/* transpose does NOT have to trim anything */ |
| 1031 |
/* Need workspace arrays having transposed dimensions. */ |
| 1032 |
need_workspace = TRUE; |
| 1033 |
transpose_it = TRUE; |
| 1034 |
break; |
| 1035 |
case JXFORM_TRANSVERSE: |
| 1036 |
if (info->trim) { |
| 1037 |
trim_right_edge(info, srcinfo->output_height); |
| 1038 |
trim_bottom_edge(info, srcinfo->output_width); |
| 1039 |
} |
| 1040 |
/* Need workspace arrays having transposed dimensions. */ |
| 1041 |
need_workspace = TRUE; |
| 1042 |
transpose_it = TRUE; |
| 1043 |
break; |
| 1044 |
case JXFORM_ROT_90: |
| 1045 |
if (info->trim) |
| 1046 |
trim_right_edge(info, srcinfo->output_height); |
| 1047 |
/* Need workspace arrays having transposed dimensions. */ |
| 1048 |
need_workspace = TRUE; |
| 1049 |
transpose_it = TRUE; |
| 1050 |
break; |
| 1051 |
case JXFORM_ROT_180: |
| 1052 |
if (info->trim) { |
| 1053 |
trim_right_edge(info, srcinfo->output_width); |
| 1054 |
trim_bottom_edge(info, srcinfo->output_height); |
| 1055 |
} |
| 1056 |
/* Need workspace arrays having same dimensions as source image. */ |
| 1057 |
need_workspace = TRUE; |
| 1058 |
break; |
| 1059 |
case JXFORM_ROT_270: |
| 1060 |
if (info->trim) |
| 1061 |
trim_bottom_edge(info, srcinfo->output_width); |
| 1062 |
/* Need workspace arrays having transposed dimensions. */ |
| 1063 |
need_workspace = TRUE; |
| 1064 |
transpose_it = TRUE; |
| 1065 |
break; |
| 1066 |
} |
| 1067 |
|
| 1068 |
/* Allocate workspace if needed. |
| 1069 |
* Note that we allocate arrays padded out to the next iMCU boundary, |
| 1070 |
* so that transform routines need not worry about missing edge blocks. |
| 1071 |
*/ |
| 1072 |
if (need_workspace) { |
| 1073 |
coef_arrays = (jvirt_barray_ptr *) |
| 1074 |
(*srcinfo->mem->alloc_small) ((j_common_ptr) srcinfo, JPOOL_IMAGE, |
| 1075 |
SIZEOF(jvirt_barray_ptr) * info->num_components); |
| 1076 |
width_in_iMCUs = (JDIMENSION) |
| 1077 |
jdiv_round_up((long) info->output_width, |
| 1078 |
(long) info->iMCU_sample_width); |
| 1079 |
height_in_iMCUs = (JDIMENSION) |
| 1080 |
jdiv_round_up((long) info->output_height, |
| 1081 |
(long) info->iMCU_sample_height); |
| 1082 |
for (ci = 0; ci < info->num_components; ci++) { |
| 1083 |
compptr = srcinfo->comp_info + ci; |
| 1084 |
if (info->num_components == 1) { |
| 1085 |
/* we're going to force samp factors to 1x1 in this case */ |
| 1086 |
h_samp_factor = v_samp_factor = 1; |
| 1087 |
} else if (transpose_it) { |
| 1088 |
h_samp_factor = compptr->v_samp_factor; |
| 1089 |
v_samp_factor = compptr->h_samp_factor; |
| 1090 |
} else { |
| 1091 |
h_samp_factor = compptr->h_samp_factor; |
| 1092 |
v_samp_factor = compptr->v_samp_factor; |
| 1093 |
} |
| 1094 |
width_in_blocks = width_in_iMCUs * h_samp_factor; |
| 1095 |
height_in_blocks = height_in_iMCUs * v_samp_factor; |
| 1096 |
coef_arrays[ci] = (*srcinfo->mem->request_virt_barray) |
| 1097 |
((j_common_ptr) srcinfo, JPOOL_IMAGE, FALSE, |
| 1098 |
width_in_blocks, height_in_blocks, (JDIMENSION) v_samp_factor); |
| 1099 |
} |
| 1100 |
info->workspace_coef_arrays = coef_arrays; |
| 1101 |
} else |
| 1102 |
info->workspace_coef_arrays = NULL; |
| 1103 |
|
| 1104 |
return TRUE; |
| 1105 |
} |
| 1106 |
|
| 1107 |
|
| 1108 |
/* Transpose destination image parameters */ |
| 1109 |
|
| 1110 |
LOCAL(void) |
| 1111 |
transpose_critical_parameters (j_compress_ptr dstinfo) |
| 1112 |
{ |
| 1113 |
int tblno, i, j, ci, itemp; |
| 1114 |
jpeg_component_info *compptr; |
| 1115 |
JQUANT_TBL *qtblptr; |
| 1116 |
JDIMENSION jtemp; |
| 1117 |
UINT16 qtemp; |
| 1118 |
|
| 1119 |
/* Transpose image dimensions */ |
| 1120 |
jtemp = dstinfo->image_width; |
| 1121 |
dstinfo->image_width = dstinfo->image_height; |
| 1122 |
dstinfo->image_height = jtemp; |
| 1123 |
itemp = dstinfo->min_DCT_h_scaled_size; |
| 1124 |
dstinfo->min_DCT_h_scaled_size = dstinfo->min_DCT_v_scaled_size; |
| 1125 |
dstinfo->min_DCT_v_scaled_size = itemp; |
| 1126 |
|
| 1127 |
/* Transpose sampling factors */ |
| 1128 |
for (ci = 0; ci < dstinfo->num_components; ci++) { |
| 1129 |
compptr = dstinfo->comp_info + ci; |
| 1130 |
itemp = compptr->h_samp_factor; |
| 1131 |
compptr->h_samp_factor = compptr->v_samp_factor; |
| 1132 |
compptr->v_samp_factor = itemp; |
| 1133 |
} |
| 1134 |
|
| 1135 |
/* Transpose quantization tables */ |
| 1136 |
for (tblno = 0; tblno < NUM_QUANT_TBLS; tblno++) { |
| 1137 |
qtblptr = dstinfo->quant_tbl_ptrs[tblno]; |
| 1138 |
if (qtblptr != NULL) { |
| 1139 |
for (i = 0; i < DCTSIZE; i++) { |
| 1140 |
for (j = 0; j < i; j++) { |
| 1141 |
qtemp = qtblptr->quantval[i*DCTSIZE+j]; |
| 1142 |
qtblptr->quantval[i*DCTSIZE+j] = qtblptr->quantval[j*DCTSIZE+i]; |
| 1143 |
qtblptr->quantval[j*DCTSIZE+i] = qtemp; |
| 1144 |
} |
| 1145 |
} |
| 1146 |
} |
| 1147 |
} |
| 1148 |
} |
| 1149 |
|
| 1150 |
|
| 1151 |
/* Adjust Exif image parameters. |
| 1152 |
* |
| 1153 |
* We try to adjust the Tags ExifImageWidth and ExifImageHeight if possible. |
| 1154 |
*/ |
| 1155 |
|
| 1156 |
LOCAL(void) |
| 1157 |
adjust_exif_parameters (JOCTET FAR * data, unsigned int length, |
| 1158 |
JDIMENSION new_width, JDIMENSION new_height) |
| 1159 |
{ |
| 1160 |
boolean is_motorola; /* Flag for byte order */ |
| 1161 |
unsigned int number_of_tags, tagnum; |
| 1162 |
unsigned int firstoffset, offset; |
| 1163 |
JDIMENSION new_value; |
| 1164 |
|
| 1165 |
if (length < 12) return; /* Length of an IFD entry */ |
| 1166 |
|
| 1167 |
/* Discover byte order */ |
| 1168 |
if (GETJOCTET(data[0]) == 0x49 && GETJOCTET(data[1]) == 0x49) |
| 1169 |
is_motorola = FALSE; |
| 1170 |
else if (GETJOCTET(data[0]) == 0x4D && GETJOCTET(data[1]) == 0x4D) |
| 1171 |
is_motorola = TRUE; |
| 1172 |
else |
| 1173 |
return; |
| 1174 |
|
| 1175 |
/* Check Tag Mark */ |
| 1176 |
if (is_motorola) { |
| 1177 |
if (GETJOCTET(data[2]) != 0) return; |
| 1178 |
if (GETJOCTET(data[3]) != 0x2A) return; |
| 1179 |
} else { |
| 1180 |
if (GETJOCTET(data[3]) != 0) return; |
| 1181 |
if (GETJOCTET(data[2]) != 0x2A) return; |
| 1182 |
} |
| 1183 |
|
| 1184 |
/* Get first IFD offset (offset to IFD0) */ |
| 1185 |
if (is_motorola) { |
| 1186 |
if (GETJOCTET(data[4]) != 0) return; |
| 1187 |
if (GETJOCTET(data[5]) != 0) return; |
| 1188 |
firstoffset = GETJOCTET(data[6]); |
| 1189 |
firstoffset <<= 8; |
| 1190 |
firstoffset += GETJOCTET(data[7]); |
| 1191 |
} else { |
| 1192 |
if (GETJOCTET(data[7]) != 0) return; |
| 1193 |
if (GETJOCTET(data[6]) != 0) return; |
| 1194 |
firstoffset = GETJOCTET(data[5]); |
| 1195 |
firstoffset <<= 8; |
| 1196 |
firstoffset += GETJOCTET(data[4]); |
| 1197 |
} |
| 1198 |
if (firstoffset > length - 2) return; /* check end of data segment */ |
| 1199 |
|
| 1200 |
/* Get the number of directory entries contained in this IFD */ |
| 1201 |
if (is_motorola) { |
| 1202 |
number_of_tags = GETJOCTET(data[firstoffset]); |
| 1203 |
number_of_tags <<= 8; |
| 1204 |
number_of_tags += GETJOCTET(data[firstoffset+1]); |
| 1205 |
} else { |
| 1206 |
number_of_tags = GETJOCTET(data[firstoffset+1]); |
| 1207 |
number_of_tags <<= 8; |
| 1208 |
number_of_tags += GETJOCTET(data[firstoffset]); |
| 1209 |
} |
| 1210 |
if (number_of_tags == 0) return; |
| 1211 |
firstoffset += 2; |
| 1212 |
|
| 1213 |
/* Search for ExifSubIFD offset Tag in IFD0 */ |
| 1214 |
for (;;) { |
| 1215 |
if (firstoffset > length - 12) return; /* check end of data segment */ |
| 1216 |
/* Get Tag number */ |
| 1217 |
if (is_motorola) { |
| 1218 |
tagnum = GETJOCTET(data[firstoffset]); |
| 1219 |
tagnum <<= 8; |
| 1220 |
tagnum += GETJOCTET(data[firstoffset+1]); |
| 1221 |
} else { |
| 1222 |
tagnum = GETJOCTET(data[firstoffset+1]); |
| 1223 |
tagnum <<= 8; |
| 1224 |
tagnum += GETJOCTET(data[firstoffset]); |
| 1225 |
} |
| 1226 |
if (tagnum == 0x8769) break; /* found ExifSubIFD offset Tag */ |
| 1227 |
if (--number_of_tags == 0) return; |
| 1228 |
firstoffset += 12; |
| 1229 |
} |
| 1230 |
|
| 1231 |
/* Get the ExifSubIFD offset */ |
| 1232 |
if (is_motorola) { |
| 1233 |
if (GETJOCTET(data[firstoffset+8]) != 0) return; |
| 1234 |
if (GETJOCTET(data[firstoffset+9]) != 0) return; |
| 1235 |
offset = GETJOCTET(data[firstoffset+10]); |
| 1236 |
offset <<= 8; |
| 1237 |
offset += GETJOCTET(data[firstoffset+11]); |
| 1238 |
} else { |
| 1239 |
if (GETJOCTET(data[firstoffset+11]) != 0) return; |
| 1240 |
if (GETJOCTET(data[firstoffset+10]) != 0) return; |
| 1241 |
offset = GETJOCTET(data[firstoffset+9]); |
| 1242 |
offset <<= 8; |
| 1243 |
offset += GETJOCTET(data[firstoffset+8]); |
| 1244 |
} |
| 1245 |
if (offset > length - 2) return; /* check end of data segment */ |
| 1246 |
|
| 1247 |
/* Get the number of directory entries contained in this SubIFD */ |
| 1248 |
if (is_motorola) { |
| 1249 |
number_of_tags = GETJOCTET(data[offset]); |
| 1250 |
number_of_tags <<= 8; |
| 1251 |
number_of_tags += GETJOCTET(data[offset+1]); |
| 1252 |
} else { |
| 1253 |
number_of_tags = GETJOCTET(data[offset+1]); |
| 1254 |
number_of_tags <<= 8; |
| 1255 |
number_of_tags += GETJOCTET(data[offset]); |
| 1256 |
} |
| 1257 |
if (number_of_tags < 2) return; |
| 1258 |
offset += 2; |
| 1259 |
|
| 1260 |
/* Search for ExifImageWidth and ExifImageHeight Tags in this SubIFD */ |
| 1261 |
do { |
| 1262 |
if (offset > length - 12) return; /* check end of data segment */ |
| 1263 |
/* Get Tag number */ |
| 1264 |
if (is_motorola) { |
| 1265 |
tagnum = GETJOCTET(data[offset]); |
| 1266 |
tagnum <<= 8; |
| 1267 |
tagnum += GETJOCTET(data[offset+1]); |
| 1268 |
} else { |
| 1269 |
tagnum = GETJOCTET(data[offset+1]); |
| 1270 |
tagnum <<= 8; |
| 1271 |
tagnum += GETJOCTET(data[offset]); |
| 1272 |
} |
| 1273 |
if (tagnum == 0xA002 || tagnum == 0xA003) { |
| 1274 |
if (tagnum == 0xA002) |
| 1275 |
new_value = new_width; /* ExifImageWidth Tag */ |
| 1276 |
else |
| 1277 |
new_value = new_height; /* ExifImageHeight Tag */ |
| 1278 |
if (is_motorola) { |
| 1279 |
data[offset+2] = 0; /* Format = unsigned long (4 octets) */ |
| 1280 |
data[offset+3] = 4; |
| 1281 |
data[offset+4] = 0; /* Number Of Components = 1 */ |
| 1282 |
data[offset+5] = 0; |
| 1283 |
data[offset+6] = 0; |
| 1284 |
data[offset+7] = 1; |
| 1285 |
data[offset+8] = 0; |
| 1286 |
data[offset+9] = 0; |
| 1287 |
data[offset+10] = (JOCTET)((new_value >> 8) & 0xFF); |
| 1288 |
data[offset+11] = (JOCTET)(new_value & 0xFF); |
| 1289 |
} else { |
| 1290 |
data[offset+2] = 4; /* Format = unsigned long (4 octets) */ |
| 1291 |
data[offset+3] = 0; |
| 1292 |
data[offset+4] = 1; /* Number Of Components = 1 */ |
| 1293 |
data[offset+5] = 0; |
| 1294 |
data[offset+6] = 0; |
| 1295 |
data[offset+7] = 0; |
| 1296 |
data[offset+8] = (JOCTET)(new_value & 0xFF); |
| 1297 |
data[offset+9] = (JOCTET)((new_value >> 8) & 0xFF); |
| 1298 |
data[offset+10] = 0; |
| 1299 |
data[offset+11] = 0; |
| 1300 |
} |
| 1301 |
} |
| 1302 |
offset += 12; |
| 1303 |
} while (--number_of_tags); |
| 1304 |
} |
| 1305 |
|
| 1306 |
|
| 1307 |
/* Adjust output image parameters as needed. |
| 1308 |
* |
| 1309 |
* This must be called after jpeg_copy_critical_parameters() |
| 1310 |
* and before jpeg_write_coefficients(). |
| 1311 |
* |
| 1312 |
* The return value is the set of virtual coefficient arrays to be written |
| 1313 |
* (either the ones allocated by jtransform_request_workspace, or the |
| 1314 |
* original source data arrays). The caller will need to pass this value |
| 1315 |
* to jpeg_write_coefficients(). |
| 1316 |
*/ |
| 1317 |
|
| 1318 |
GLOBAL(jvirt_barray_ptr *) |
| 1319 |
jtransform_adjust_parameters (j_decompress_ptr srcinfo, |
| 1320 |
j_compress_ptr dstinfo, |
| 1321 |
jvirt_barray_ptr *src_coef_arrays, |
| 1322 |
jpeg_transform_info *info) |
| 1323 |
{ |
| 1324 |
/* If force-to-grayscale is requested, adjust destination parameters */ |
| 1325 |
if (info->force_grayscale) { |
| 1326 |
/* First, ensure we have YCbCr or grayscale data, and that the source's |
| 1327 |
* Y channel is full resolution. (No reasonable person would make Y |
| 1328 |
* be less than full resolution, so actually coping with that case |
| 1329 |
* isn't worth extra code space. But we check it to avoid crashing.) |
| 1330 |
*/ |
| 1331 |
if (((dstinfo->jpeg_color_space == JCS_YCbCr && |
| 1332 |
dstinfo->num_components == 3) || |
| 1333 |
(dstinfo->jpeg_color_space == JCS_GRAYSCALE && |
| 1334 |
dstinfo->num_components == 1)) && |
| 1335 |
srcinfo->comp_info[0].h_samp_factor == srcinfo->max_h_samp_factor && |
| 1336 |
srcinfo->comp_info[0].v_samp_factor == srcinfo->max_v_samp_factor) { |
| 1337 |
/* We use jpeg_set_colorspace to make sure subsidiary settings get fixed |
| 1338 |
* properly. Among other things, it sets the target h_samp_factor & |
| 1339 |
* v_samp_factor to 1, which typically won't match the source. |
| 1340 |
* We have to preserve the source's quantization table number, however. |
| 1341 |
*/ |
| 1342 |
int sv_quant_tbl_no = dstinfo->comp_info[0].quant_tbl_no; |
| 1343 |
jpeg_set_colorspace(dstinfo, JCS_GRAYSCALE); |
| 1344 |
dstinfo->comp_info[0].quant_tbl_no = sv_quant_tbl_no; |
| 1345 |
} else { |
| 1346 |
/* Sorry, can't do it */ |
| 1347 |
ERREXIT(dstinfo, JERR_CONVERSION_NOTIMPL); |
| 1348 |
} |
| 1349 |
} else if (info->num_components == 1) { |
| 1350 |
/* For a single-component source, we force the destination sampling factors |
| 1351 |
* to 1x1, with or without force_grayscale. This is useful because some |
| 1352 |
* decoders choke on grayscale images with other sampling factors. |
| 1353 |
*/ |
| 1354 |
dstinfo->comp_info[0].h_samp_factor = 1; |
| 1355 |
dstinfo->comp_info[0].v_samp_factor = 1; |
| 1356 |
} |
| 1357 |
|
| 1358 |
/* Correct the destination's image dimensions as necessary |
| 1359 |
* for rotate/flip, resize, and crop operations. |
| 1360 |
*/ |
| 1361 |
dstinfo->jpeg_width = info->output_width; |
| 1362 |
dstinfo->jpeg_height = info->output_height; |
| 1363 |
|
| 1364 |
/* Transpose destination image parameters */ |
| 1365 |
switch (info->transform) { |
| 1366 |
case JXFORM_TRANSPOSE: |
| 1367 |
case JXFORM_TRANSVERSE: |
| 1368 |
case JXFORM_ROT_90: |
| 1369 |
case JXFORM_ROT_270: |
| 1370 |
transpose_critical_parameters(dstinfo); |
| 1371 |
break; |
| 1372 |
default: |
| 1373 |
break; |
| 1374 |
} |
| 1375 |
|
| 1376 |
/* Adjust Exif properties */ |
| 1377 |
if (srcinfo->marker_list != NULL && |
| 1378 |
srcinfo->marker_list->marker == JPEG_APP0+1 && |
| 1379 |
srcinfo->marker_list->data_length >= 6 && |
| 1380 |
GETJOCTET(srcinfo->marker_list->data[0]) == 0x45 && |
| 1381 |
GETJOCTET(srcinfo->marker_list->data[1]) == 0x78 && |
| 1382 |
GETJOCTET(srcinfo->marker_list->data[2]) == 0x69 && |
| 1383 |
GETJOCTET(srcinfo->marker_list->data[3]) == 0x66 && |
| 1384 |
GETJOCTET(srcinfo->marker_list->data[4]) == 0 && |
| 1385 |
GETJOCTET(srcinfo->marker_list->data[5]) == 0) { |
| 1386 |
/* Suppress output of JFIF marker */ |
| 1387 |
dstinfo->write_JFIF_header = FALSE; |
| 1388 |
/* Adjust Exif image parameters */ |
| 1389 |
if (dstinfo->jpeg_width != srcinfo->image_width || |
| 1390 |
dstinfo->jpeg_height != srcinfo->image_height) |
| 1391 |
/* Align data segment to start of TIFF structure for parsing */ |
| 1392 |
adjust_exif_parameters(srcinfo->marker_list->data + 6, |
| 1393 |
srcinfo->marker_list->data_length - 6, |
| 1394 |
dstinfo->jpeg_width, dstinfo->jpeg_height); |
| 1395 |
} |
| 1396 |
|
| 1397 |
/* Return the appropriate output data set */ |
| 1398 |
if (info->workspace_coef_arrays != NULL) |
| 1399 |
return info->workspace_coef_arrays; |
| 1400 |
return src_coef_arrays; |
| 1401 |
} |
| 1402 |
|
| 1403 |
|
| 1404 |
/* Execute the actual transformation, if any. |
| 1405 |
* |
| 1406 |
* This must be called *after* jpeg_write_coefficients, because it depends |
| 1407 |
* on jpeg_write_coefficients to have computed subsidiary values such as |
| 1408 |
* the per-component width and height fields in the destination object. |
| 1409 |
* |
| 1410 |
* Note that some transformations will modify the source data arrays! |
| 1411 |
*/ |
| 1412 |
|
| 1413 |
GLOBAL(void) |
| 1414 |
jtransform_execute_transform (j_decompress_ptr srcinfo, |
| 1415 |
j_compress_ptr dstinfo, |
| 1416 |
jvirt_barray_ptr *src_coef_arrays, |
| 1417 |
jpeg_transform_info *info) |
| 1418 |
{ |
| 1419 |
jvirt_barray_ptr *dst_coef_arrays = info->workspace_coef_arrays; |
| 1420 |
|
| 1421 |
/* Note: conditions tested here should match those in switch statement |
| 1422 |
* in jtransform_request_workspace() |
| 1423 |
*/ |
| 1424 |
switch (info->transform) { |
| 1425 |
case JXFORM_NONE: |
| 1426 |
if (info->x_crop_offset != 0 || info->y_crop_offset != 0) |
| 1427 |
do_crop(srcinfo, dstinfo, info->x_crop_offset, info->y_crop_offset, |
| 1428 |
src_coef_arrays, dst_coef_arrays); |
| 1429 |
break; |
| 1430 |
case JXFORM_FLIP_H: |
| 1431 |
if (info->y_crop_offset != 0) |
| 1432 |
do_flip_h(srcinfo, dstinfo, info->x_crop_offset, info->y_crop_offset, |
| 1433 |
src_coef_arrays, dst_coef_arrays); |
| 1434 |
else |
| 1435 |
do_flip_h_no_crop(srcinfo, dstinfo, info->x_crop_offset, |
| 1436 |
src_coef_arrays); |
| 1437 |
break; |
| 1438 |
case JXFORM_FLIP_V: |
| 1439 |
do_flip_v(srcinfo, dstinfo, info->x_crop_offset, info->y_crop_offset, |
| 1440 |
src_coef_arrays, dst_coef_arrays); |
| 1441 |
break; |
| 1442 |
case JXFORM_TRANSPOSE: |
| 1443 |
do_transpose(srcinfo, dstinfo, info->x_crop_offset, info->y_crop_offset, |
| 1444 |
src_coef_arrays, dst_coef_arrays); |
| 1445 |
break; |
| 1446 |
case JXFORM_TRANSVERSE: |
| 1447 |
do_transverse(srcinfo, dstinfo, info->x_crop_offset, info->y_crop_offset, |
| 1448 |
src_coef_arrays, dst_coef_arrays); |
| 1449 |
break; |
| 1450 |
case JXFORM_ROT_90: |
| 1451 |
do_rot_90(srcinfo, dstinfo, info->x_crop_offset, info->y_crop_offset, |
| 1452 |
src_coef_arrays, dst_coef_arrays); |
| 1453 |
break; |
| 1454 |
case JXFORM_ROT_180: |
| 1455 |
do_rot_180(srcinfo, dstinfo, info->x_crop_offset, info->y_crop_offset, |
| 1456 |
src_coef_arrays, dst_coef_arrays); |
| 1457 |
break; |
| 1458 |
case JXFORM_ROT_270: |
| 1459 |
do_rot_270(srcinfo, dstinfo, info->x_crop_offset, info->y_crop_offset, |
| 1460 |
src_coef_arrays, dst_coef_arrays); |
| 1461 |
break; |
| 1462 |
} |
| 1463 |
} |
| 1464 |
|
| 1465 |
/* jtransform_perfect_transform |
| 1466 |
* |
| 1467 |
* Determine whether lossless transformation is perfectly |
| 1468 |
* possible for a specified image and transformation. |
| 1469 |
* |
| 1470 |
* Inputs: |
| 1471 |
* image_width, image_height: source image dimensions. |
| 1472 |
* MCU_width, MCU_height: pixel dimensions of MCU. |
| 1473 |
* transform: transformation identifier. |
| 1474 |
* Parameter sources from initialized jpeg_struct |
| 1475 |
* (after reading source header): |
| 1476 |
* image_width = cinfo.image_width |
| 1477 |
* image_height = cinfo.image_height |
| 1478 |
* MCU_width = cinfo.max_h_samp_factor * cinfo.block_size |
| 1479 |
* MCU_height = cinfo.max_v_samp_factor * cinfo.block_size |
| 1480 |
* Result: |
| 1481 |
* TRUE = perfect transformation possible |
| 1482 |
* FALSE = perfect transformation not possible |
| 1483 |
* (may use custom action then) |
| 1484 |
*/ |
| 1485 |
|
| 1486 |
GLOBAL(boolean) |
| 1487 |
jtransform_perfect_transform(JDIMENSION image_width, JDIMENSION image_height, |
| 1488 |
int MCU_width, int MCU_height, |
| 1489 |
JXFORM_CODE transform) |
| 1490 |
{ |
| 1491 |
boolean result = TRUE; /* initialize TRUE */ |
| 1492 |
|
| 1493 |
switch (transform) { |
| 1494 |
case JXFORM_FLIP_H: |
| 1495 |
case JXFORM_ROT_270: |
| 1496 |
if (image_width % (JDIMENSION) MCU_width) |
| 1497 |
result = FALSE; |
| 1498 |
break; |
| 1499 |
case JXFORM_FLIP_V: |
| 1500 |
case JXFORM_ROT_90: |
| 1501 |
if (image_height % (JDIMENSION) MCU_height) |
| 1502 |
result = FALSE; |
| 1503 |
break; |
| 1504 |
case JXFORM_TRANSVERSE: |
| 1505 |
case JXFORM_ROT_180: |
| 1506 |
if (image_width % (JDIMENSION) MCU_width) |
| 1507 |
result = FALSE; |
| 1508 |
if (image_height % (JDIMENSION) MCU_height) |
| 1509 |
result = FALSE; |
| 1510 |
break; |
| 1511 |
default: |
| 1512 |
break; |
| 1513 |
} |
| 1514 |
|
| 1515 |
return result; |
| 1516 |
} |
| 1517 |
|
| 1518 |
#endif /* TRANSFORMS_SUPPORTED */ |
| 1519 |
|
| 1520 |
|
| 1521 |
/* Setup decompression object to save desired markers in memory. |
| 1522 |
* This must be called before jpeg_read_header() to have the desired effect. |
| 1523 |
*/ |
| 1524 |
|
| 1525 |
GLOBAL(void) |
| 1526 |
jcopy_markers_setup (j_decompress_ptr srcinfo, JCOPY_OPTION option) |
| 1527 |
{ |
| 1528 |
#ifdef SAVE_MARKERS_SUPPORTED |
| 1529 |
int m; |
| 1530 |
|
| 1531 |
/* Save comments except under NONE option */ |
| 1532 |
if (option != JCOPYOPT_NONE) { |
| 1533 |
jpeg_save_markers(srcinfo, JPEG_COM, 0xFFFF); |
| 1534 |
} |
| 1535 |
/* Save all types of APPn markers iff ALL option */ |
| 1536 |
if (option == JCOPYOPT_ALL) { |
| 1537 |
for (m = 0; m < 16; m++) |
| 1538 |
jpeg_save_markers(srcinfo, JPEG_APP0 + m, 0xFFFF); |
| 1539 |
} |
| 1540 |
#endif /* SAVE_MARKERS_SUPPORTED */ |
| 1541 |
} |
| 1542 |
|
| 1543 |
/* Copy markers saved in the given source object to the destination object. |
| 1544 |
* This should be called just after jpeg_start_compress() or |
| 1545 |
* jpeg_write_coefficients(). |
| 1546 |
* Note that those routines will have written the SOI, and also the |
| 1547 |
* JFIF APP0 or Adobe APP14 markers if selected. |
| 1548 |
*/ |
| 1549 |
|
| 1550 |
GLOBAL(void) |
| 1551 |
jcopy_markers_execute (j_decompress_ptr srcinfo, j_compress_ptr dstinfo, |
| 1552 |
JCOPY_OPTION option) |
| 1553 |
{ |
| 1554 |
jpeg_saved_marker_ptr marker; |
| 1555 |
|
| 1556 |
/* In the current implementation, we don't actually need to examine the |
| 1557 |
* option flag here; we just copy everything that got saved. |
| 1558 |
* But to avoid confusion, we do not output JFIF and Adobe APP14 markers |
| 1559 |
* if the encoder library already wrote one. |
| 1560 |
*/ |
| 1561 |
for (marker = srcinfo->marker_list; marker != NULL; marker = marker->next) { |
| 1562 |
if (dstinfo->write_JFIF_header && |
| 1563 |
marker->marker == JPEG_APP0 && |
| 1564 |
marker->data_length >= 5 && |
| 1565 |
GETJOCTET(marker->data[0]) == 0x4A && |
| 1566 |
GETJOCTET(marker->data[1]) == 0x46 && |
| 1567 |
GETJOCTET(marker->data[2]) == 0x49 && |
| 1568 |
GETJOCTET(marker->data[3]) == 0x46 && |
| 1569 |
GETJOCTET(marker->data[4]) == 0) |
| 1570 |
continue; /* reject duplicate JFIF */ |
| 1571 |
if (dstinfo->write_Adobe_marker && |
| 1572 |
marker->marker == JPEG_APP0+14 && |
| 1573 |
marker->data_length >= 5 && |
| 1574 |
GETJOCTET(marker->data[0]) == 0x41 && |
| 1575 |
GETJOCTET(marker->data[1]) == 0x64 && |
| 1576 |
GETJOCTET(marker->data[2]) == 0x6F && |
| 1577 |
GETJOCTET(marker->data[3]) == 0x62 && |
| 1578 |
GETJOCTET(marker->data[4]) == 0x65) |
| 1579 |
continue; /* reject duplicate Adobe */ |
| 1580 |
#ifdef NEED_FAR_POINTERS |
| 1581 |
/* We could use jpeg_write_marker if the data weren't FAR... */ |
| 1582 |
{ |
| 1583 |
unsigned int i; |
| 1584 |
jpeg_write_m_header(dstinfo, marker->marker, marker->data_length); |
| 1585 |
for (i = 0; i < marker->data_length; i++) |
| 1586 |
jpeg_write_m_byte(dstinfo, marker->data[i]); |
| 1587 |
} |
| 1588 |
#else |
| 1589 |
jpeg_write_marker(dstinfo, marker->marker, |
| 1590 |
marker->data, marker->data_length); |
| 1591 |
#endif |
| 1592 |
} |
| 1593 |
} |
| 1594 |
|
| 1595 |
} // namespace Digikam |
| 1596 |
|
| 1597 |
#else // JPEG_LIB_VERSION >= 80 |
| 1598 |
|
| 1 |
/* |
1599 |
/* |
| 2 |
* transupp.c |
1600 |
* transupp.c |
| 3 |
* |
1601 |
* |
|
Lines 12-30
Link Here
|
| 12 |
* interfaces. |
1610 |
* interfaces. |
| 13 |
*/ |
1611 |
*/ |
| 14 |
|
1612 |
|
| 15 |
/* Although this file really shouldn't have access to the library internals, |
|
|
| 16 |
* it's helpful to let it call jround_up() and jcopy_block_row(). |
| 17 |
*/ |
| 18 |
#define JPEG_INTERNALS |
| 19 |
|
| 20 |
// LibJPEG includes. |
| 21 |
|
| 22 |
extern "C" |
| 23 |
{ |
| 24 |
#include "jinclude.h" |
| 25 |
#include "jpeglib.h" |
| 26 |
} |
| 27 |
|
| 28 |
// Local includes. |
1613 |
// Local includes. |
| 29 |
|
1614 |
|
| 30 |
#include "transupp.h" /* My own external interface */ |
1615 |
#include "transupp.h" /* My own external interface */ |
|
Lines 938-940
jcopy_markers_execute (j_decompress_ptr srcinfo, j_compress_ptr dstinfo,
Link Here
|
| 938 |
} |
2546 |
} |
| 939 |
|
2547 |
|
| 940 |
} // namespace Digikam |
2548 |
} // namespace Digikam |
|
|
2549 |
|
| 2550 |
#endif // JPEG_LIB_VERSION >= 80 |